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•  ~ 340 measurements of 
magmatic and volcanic 
deformation 
 

conduit pressurization and lava dome extrusion also present
challenges for InSAR detection19.

Relative timing of deformation and eruption. So far, we consider
the states ‘deformed’ and ‘erupted’ as two independent, underlying
traits, yet defining the temporal and causal links between deforma-
tion and eruption is essential for using geodetic observations in a
predictive sense. Altering our definitions such that only pre-eruptive
deformation is considered a true positive for the 18-year data set
(leaving 13 classified as DE, and 12 as !DE) gives a PPV value of 0.31
and a NPV of 0.92. Both these values are within the 95% confidence
intervals of the PPV and NPV values for the unfiltered data set.
Detailed investigation of the timescale of pre-eruptive deformation

based on InSAR observations reveals the strong publication bias
towards reporting periods of deformation. Figure 4 covers both
individual and systematic studies of DE volcanoes and includes all
eruptions for which more than 3 years of InSAR data are reported,
excluding lava lakes, frequent eruptions (more than one every 3
years) and continuous effusion (Supplementary Table 7). It shows 13
volcanoes that deformed continuously throughout their eruptive
cycle and a further 16 where observations began during or after
eruption. Deformation is reported to have begun less than a year
prior to eruption at Alu in Ethiopia20, El Hierro in the Canaries21

and Eyjafjallajökull in Iceland5. Interestingly, although Alu and
Dalafilla erupted simultaneously, Alu showed pre-eruptive
deformation but Dalafilla did not20. Eyjafjallajökull is unique at
present in the InSAR record in that it shows multiple short pulses of
uplift, two of which did not end in eruption within a year and one
that did5,22. Time periods during which no deformation occurred
(black bars) are rarely reported explicitly. It is likely that observations
continued for over 3 years at several of the volcanoes that were
excluded from our analysis but only the time periods during which
deformation occurred were reported. Infrequent SAR acquisitions
may also obscure the temporal relationship between deformation
and eruption, especially where deformation is short-lived.

Discussion
Volcanoes that erupted during the observation window are B4
times more likely to have recorded deformation than not (the
positive likelihood ratio), meaning this information provides
‘strong’ evidential worth23. However, a PPV of 0.46 indicates that
deformation alone, while worthy of concern, should not be
considered a strong diagnostic of imminent eruption. Moreover,
the much greater NPV is important because although much
emphasis is placed on the ability of volcanologists to predict
eruptions, often the ability to make a valid negative deduction can
be very valuable for hazard and risk decisions.

Statistical tests on ground-based data (primarily seismicity)
indicate that pre-eruptive unrest duration varies between volcano
types: from 2 days at complex13 volcanoes to 5 months at shield
volcanoes24. Radar images of the majority of the world’s
volcanoes are only acquired a few times per year, so
deformation on these timescales is only resolvable at the
handful of volcanoes for which multiple satellite constellations
provide frequent revisits or those with permanent ground-based
deformation monitoring. Due to the publication bias towards
periods of deformation, we are not yet able to quantify the causal
or temporal relationships between the extent, rates, timing,
amount and duration of deformation and subsequent eruption
using InSAR alone. The forthcoming launches of Sentinel-1 and
ALOS-2 will greatly increase temporal and spatial resolution and
coverage, enabling more subtle distinctions to be incorporated
into pattern analysis.

Nonetheless, even with the current data set it is clear that,
although the behaviour of individual plumbing systems is often
poorly characterized, the statistics for some subsets of global
volcanoes (for example, those on rifts, andesite versus rhyolite
and so on, Fig. 3) lie outside the global confidence intervals and
are consistent with current understanding of tectonic, petrological
and volcanological influences. The short eruption cycles at
hotspot volcanoes and those of basaltic and andesitic composition
mean that the satellite record typically spans both deformation
and eruption resulting in a high PPV. For volcanoes with long
eruption cycles, the satellite record tends to capture either
deformation or eruption but rarely both. In the case of rhyolitic,
dacitic, phonolitic and trachytic volcanoes and calderas, the inter-
eruption period is characterized by shallow magmatic storage
producing regular deformation episodes with infrequent
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Figure 1 | Global distribution of volcanoes. Locations of 1390 named
subaerial Holocene volcanoes from the Global Volcano Database13

(all symbols) showing (a) published satellite studies (filled dark blue:
systematic studies including null results; filled pale blue: studies of
individual volcanoes, 78% of which report eruption or deformation);
(b) volcanic eruptions in the Global Volcano Database during the satellite
era (filled red), and (c) 165 published reports of deformation, including
uplift, subsidence, flow compaction, edifice instabilities and all phases of
the eruptive cycle (filled green). See Supplementary Tables 1–5.
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•  Order of magnitude 
increase in availability 
and quality of SAR 
imagery 
 
• Improved acquisition 
strategies and shorter 
repeat times	
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Global Volcano Programme Database, hosted by 
the Smithsonian Institution.  Jennifer Jay, Matt 
Pritchard, Maria Furtney, Ben Andrews, Ed Venzke	



COMET catalogue:  Susanna Ebmeier, 
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•   Additions  presented:   (1) displacement signal area & rate 
    interpreted:  (2) depth & distance from volcano 

 
 
• Higher proportion of InSAR measurements capture non-
magmatic and non-eruptive processes than ground based 
measurements 

 

attr. hydrothermal Flow deposits Faulting/
gravity-
driven 
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may each contain hundreds of cubic kilometers
of melt, more than enough to generate another
supereruption. Evenmore extensive is the Altiplano
Puna Magma Body in the central Andes, where
recent geophysical surveys have identified a low-
velocity zone in the midcrust (<25 km depth)
that may comprise up to 500,000 km3 of melt-rich
(≤25%) mush (20, 21).
The geometry of melt distribution in lower

and mid-crustal reservoirs is not well constrained.
Melt fraction estimates based on tomography or
magneto-telluric (MT) images are averaged at
resolutions that are typically no better than about
1 km, so melt-rich regions smaller than this scale
cannot be detected. However, a plausible notion,
consistent with a large body of physical theory
(22–24), is that melt is heterogeneously distrib-
uted in the lower crust and includes (microscale)
melt distributed along grain boundaries; meso-
scale variations in melt concentration created by
compaction; and large-scale, vertically stacked
melt-rich lenses. The latter have been inferred
from a recent tomographic study of the very large
Toba caldera, Indonesia (25), and observed in re-
gions of extension, such as mid-ocean ridges (26),
Iceland (27), and continental rifts (28).

The inability of geophysical methods to iden-
tify large melt-rich bodies in the upper crust, by
contrast, suggests that large volumes of upper
crustal melt are likely ephemeral. In extensional
environments such as mid-ocean ridges, identified
melt lenses are thin and sill-like in shape. In arc
environments, large regions of possible melt ac-
cumulation appear limited to the mid-crust, where
they may feed multiple volcanoes (20, 29, 30). Be-
tween the mid-crust and individual volcanoes,
observed low-velocity zones are typically narrow
and vertically elongated, averaged melt estimates
are <10%, and exsolved volatiles may be important
at shallow levels (31–33).
Conditions of magma storage can also be in-

ferred from the compositions and textures of the
erupted material (lava and pyroclasts). Phase com-
positions and proportions can be matched to pre-
eruptive magma storage conditions by using phase
equilibria experiments (34–36), and bulk magma
compositions are commonly used to track magma
evolution by crystal fractionation and/or assimi-
lation (37–39). Growing evidence for extensive
entrainment of crystals throughout the spatial
extent of the magmatic system (40), however,
suggests that these methods do not provide suf-

ficient information to fully characterize most mag-
matic systems. The diversity of crystal “cargo”
contained within many volcanic rocks is nicely
illustrated by the most common igneous mineral,
plagioclase, where the crystallization history is pre-
served in strikingly complex compositional zoning
patterns that appear as shades of gray in the back-
scattered electron image shown in Fig. 3A. Mea-
sured compositional and trace-element variations
in a single crystal can then be modeled with data
from an experimentally determined phase diagram
(Fig. 3B) to show that, in this example, the crystal
core resided in a cooler but deeper part of the
magmatic system before being entrained by hotter
melt that transported it to a shallow temporary
storage region and, ultimately, to Earth’s surface
(41). More generally, abundant evidence for diverse
pre-eruptive histories of neighboring crystals within
individual samples requires crystals to be assem-
bled from different parts of the subvolcanic sys-
tem (41–45), often shortly before eruption (46–48).
These crystals may derive from either cooler mar-
ginal zones (49–51) or deeper and hotter parts of
the system (52, 53). The complex history of the
crystal cargo is further illustrated by variations in
isotopic compositions within and between indi-
vidual crystals (40, 54–57). These data show that
different crystals in a sample, or even different
zones within a crystal, must have grown from
isotopically distinct melts. It is hard to envisage
such small-scale isotopic heterogeneity existing
within a large and continuous body of melt.
Further insight into the nature of magmatic

storage systems can be found in measured time
scales of magmatic differentiation, crystal growth,
and (pre-eruptive) residence time in the trans-
porting melt (58–61). Time scales of magma dif-
ferentiation can be estimated by dating zircon
crystals, which are sufficiently resilient to be re-
cycled between individual magma batches. Zircon
data suggest differentiation time scales of 103 to
>105 years, which contrast sharply with the much
shorter time scales (< 1 to ~103 years) calculated for
magma accumulation in the upper crust before
volcanic eruptions (62–67). This dichotomy is il-
lustrated by the example from Mount St. Helens
shown in Fig. 3. Here isotopic constraints show
that entrained plagioclase crystals grew over
thousands of years (Fig. 3C) (68), whereas zircon
crystals derive from magmatic activity tens or
hundreds of thousands of years before the 1980
eruption (Fig. 3D) (69). Diffusion time scales for
magma assembly before the 1980 eruption, by
contrast, are on the order of months to years (70),
which are commensurate with the months of
observed pre-eruptive unrest. These time scales
can be reconciled only if crystals with different
histories, stored in different parts of the magmatic
system, are transported to the growing upper
crustal magma chamber and amalgamated shortly
before eruption.
The depth range of pre-eruptive magma stor-

age can be estimated by using the dissolved vol-
atile content of crystal-hosted melt inclusions
(53, 71, 72). Crystal-hosted melt inclusions from
extensional environments show shallow magma
storage over a limited pressure range (Fig. 4); this

Cashman et al., Science 355, eaag3055 (2017) 24 March 2017 2 of 9

Fig. 1. Magmatic systems. (A) Upper crustal magmatic system where silicic melts segregate from
underplated mafic magma that is intermittently resupplied from deeper levels. [Redrawn from (141)]
(B) Transcrustal magmatic system, where melt processing in the deep crust produces melts that are
transferred to mid- and finally upper crustal levels. The potential for transient vertical connectivity in
this system presents the possibility of successive destabilization of melt lenses (78). (C) Changes in
magma (orange) and mush (gray) rheology as a function of particle volume fraction. Blue curve is
calculated assuming a maximum packing fraction of 0.6 and a classical Roscoe-Einstein formulation
(10). Red curve uses the formulation of (12). Inset shows changes in mush strength as a function of
particle volume fraction; green dashed curve is experimental data using Westerly granite; purple
dashed curve is experimental data using Delegate aplite. [Redrafted from (11)]

RESEARCH | REVIEW

 o
n 

Ju
ne

 1
, 2

01
7

ht
tp

://
sc

ie
nc

e.
sc

ie
nc

em
ag

.o
rg

/
D

ow
nl

oa
de

d 
fr

om
 

Ca
sh
m
an
	
  e
t	
  a

l.,
	
  2
01
7	
  

 
• Multiple deformation sources at the 
same volcano & multiple cycles of 
deformation 
 
• Source location ≠ reservoir 
location: elastic deformation can be 
caused by volume changes in different 
parts of a reservoir 

  
• The relationship between distinct 
deformation sources provides 
information about processes within a 
magmatic zone 

 - mechanisms for melt or volatile 
 movement 
 - local response to stress changes 

6/1/2017 ScienceDirect - Full Size Image

http://www.sciencedirect.com/science?_ob=MiamiCaptionURL&_method=retrieve&_eid=1-s2.0-S0012821X14001988&_image=1-s2.0-S0012821X14001988-g… 1/1
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1. A priori knowledge of signal     that signal has been  observed 

           before  
 
2. Increasing signal to noise ratio    displacement has constant rate 
 
 
3. Filtering (spatial or temporal)    signal and noise have different 

           magnitudes  
 
4. Blind source separation      signal characteristics only 
 

Assumptions	
  

Methods for separating volcanic signals from each other 
and from noise 



1.   Separation of 
signals caused 

by different 
processes 

2.  Test of signal 
significance 

Independent 
Component 

Analysis 

Inter-group 
cluster 

analysis  



emplacement, and have saturation in not more than one or two pixels.
However it should be noted that the simulations do not take into ac-
count the delays in acquisition time down and across scan as a function
of the SEVIRI instrument's whisk-broom mode of operation which vio-
lates the assumption of linear mixing of sources in pixels, as the time
delay results in the volcanic radiance being sampled at slightly different
times in each pixel (0.6 s difference between scan lines), a problem

documented before in sequentially acquired thermal images of volcanic
activity (Oppenheimer, Rothery, Pieri, Abrams, & Carrere, 1993). The
simulated volcanic radiance is also added directly to the background,
so the effect of varying atmospheric conditions altering the signal on a
per pixel basis is not modelled. In addition, the resampling that takes
place during the conversion of level 1 to level 1.5 data is not taken
into account, however the effect of this, if any, on the assumptions
made by the ICA model is not clear. The simulations also do not take
into account of the impact of plumes on the recovered HTE, which
might be expected to partially or totally obscure the HTE, resulting in
an underestimation or gaps in the recovered total radiance. The plume
radiance signal may also be strongly correlated with the HTE source,
resulting in a recovered source that mixes HTE and some plume radi-
ance. Thus the presence of plume may violate the FastICA assumptions
of source linear mixing and independence. However, the former may
only affect HTEs substantially obscured by the plume while the latter
may be alleviated by the effect of ambient environmental effects on
the plume lessening the correlation with HTE radiance. It should also
be noted that cloud contamination affects all HTE retrieval techniques,
and doubly affects the neighbouring pixel subtractionmethod, as the ef-
fect of cloud contamination is propagated betweenpixels by subtracting
one from the other. The effect of all of these complications would have
to be investigated in more detail before the approach could be reliably
operationalized. The simulated eruption scenarios can thus be consid-
ered to establish the validity of the ICA model under ‘ideal’ conditions.

Havingestablished that under ideal conditions, volcanic signals anal-
ogous to real examples can be extracted accurately, we applied the pro-
cedure to the two case studies. ICA successfully decomposed the image
cube into sources that represent different physical processes, success-
fully isolating the volcanic and diurnal signals into separate sources,
with appropriate spatial contribution images (PSF-like for the volcanic
sources and resembling landcover variation for the diurnal cycle). A
close examination of the residuals after subtraction of the recovered
per pixel volcanic signal indicates that the recovered volcanic source ac-
counts for most of the radiance of volcanic origin. This appears to con-
firm the fundamental assumptions that sources of volcanic radiance
are sufficiently non-Gaussian in nature to be separated from other
sources of radiance by ICA, and that the mixing model is close enough
to linear that nonlinearities resulting from whisk broom acquisition
and resampling between level 1 and level 1.5 data do not substantially
interfere in the process. The noise in the recovered signal varies greatly
depending on the amount of cloud present; during clear periods the
noise was found to be between 0.0239 and 0.0488 W m−2 sr−1 μm−1,
however during cloudy periods it increased to between 0.0778 and
0.187 W m−2 sr−1 μm−1. Cloud contamination is likely not modelled
well by ICA since an ‘ideal’, unchanging cloud moving across a number

May 17 May 24 May 31

8

7

6

5

4

3

2

1

Fig. 10. Selected sources extracted from the SEVIRI image time series of the May 2010
Manda Hararo eruption using FastICA. The graphs on the right show the temporal varia-
tion of each source, the images on the left show the spatial distribution of the source in
the 9 by 9 pixel window. The central pixel time series was excluded from the ICA proce-
dure due to saturation. Source 1 is the HTE source with a PSF like spatial contribution
and a waxing and waning source time series radiance pattern, sources 2 and 3 are domi-
nated by the diurnal cyclewith a 24 h periodicity, and the remaining sources are dominat-
ed by cloud noise.

Pixel 39

Pixel 40

Pixel 41

Pixel 42

Pixel 43

May20 May21 May22 May23

Fig. 11. Comparison of signal (blue curve) extracted volcanic radiance (yellow curve), and
the residual after subtracting the volcanic radiance from the signal (red curve) for a subset
of the data between 19 and 24 May 2010. Note the residual curves are relatively smooth
during the eruption period, indicating theHTE source accounts formost of the volcanic ra-
diance, with the exception of pixel 41 which lies directly above the eruption and experi-
enced saturation.

Fig. 12. Spatially integrated volcanic radiance emitted by the May 2010 Manda Hararo
eruption found by summing the per pixel volcanic radiances. Negative peaks are due to
cloud noise.

65T. Barnie, C. Oppenheimer / Remote Sensing of Environment 158 (2015) 56–68

High temperature events from 
SEVIRI, 	


Barnie  & Oppenheimer, Remote 
Sensing, 2015	



fMRI resting state networks, Beckmann & Smith, 2004	



GRACE ‘water storage’ 
components, Frappart et al., 
2010 	

 Widely applied in medical 

physics, signal processing and 
other branches of remote sensing  



Independence is assessed using kurtosis or  
approximation of negentropy 

normal  
distribution	
  

normal  
distribution	
  

positive kurtosis	
  

negative  
kurtosis	
  

Hyvärinen  & Oja, 2000	


• Decomposition performed with FastICA algorithm 
 

 Preparation: 
 - centring & whitening 
 - dimension reduction using PCA 
 - iterative correction of choice of dimensions 



Interferograms are linear combinations of phase changes with 
different origins 
 
atmospheric changes, change in satellite position & Earth surface displacement  

MORE:	
  figures	
  



• Each pixel in an interferogram is a linear combination of points 
from several time series. 
 
• We assume that an interferogram is closer to a Gaussian 
distribution than all (most) of the signals that make it up 



Independent Component Analysis 



Assume that signals of interest are spatially independent  

Sources 
maximise the 

independence of 
spatial patterns 	
  

Rows of mixing 
matrix record the 
contribution of a 
source to each 
interferogram	
  



Assume that signals of interest are spatially independent  

• Independent components and mixing matrix rows are ambiguous 
 
• Order of independents components in Source matrix is not significant 
 
• Spatial of temporal filtering can be applied to interferograms before 
decomposition 	
  





• sources identified as  
separate components 

• contribution to each  
interferogram 
recorded in mixing 
matrix 



 
• signal reconstructed from only 
components of interest (with 
some noise)  
 	
  

• independent synthetic deformation sources are separated from each 
other, and from the atmospheric noise 
 
• for these synthetic data, sources were separated at signal to noise ratio 
as low as ~0.1 



Identifying significant sources 
 
 
Cluster Analysis performed on  
two independent groups of data 
 
• spatial patterns that capture a 
real property of the data appear in 
both groups and will be assigned 
to a cluster. 
 
• Groups can be: 
 

 1. different time periods  
 2. the same time periods but 
 independent groups of images 
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1.	
  

2.	
  

3.	
  

4.	
  

5.	
  

6.	
  

Group 1	
   Group 2	
  

Clusters identified using 
ISCTEST algorithm 
Hyvärinen & Ramkumar, 2013 



Volcán Calbuco, Chile 

• Calbuco erupted on 22 April 2015, 
43 years after its last recorded 
activity  
 
• VEI 4, 17 km a.s.l. plume 
 
• no pre-eruptive deformation 
evident in Sentinel-1 interferograms 

•  Subsidence captured by three Sentinel-1 tracks, 
consistent with  subsidence during first phase of 
eruption with a source ~13 km depth 

Figure 3. InSAR 
 

 
 
  

by Marco Bagnardi, from Pyle et al., in prep	
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•  Component that represents deformation can be identified from mixing matrix, 
 given time of event alone 

 
•  End member test  -> separation of subsidence and atmospheric features most 

 difficult where deformation appears in > 1 interferogram 



Deformation and atmospheric features are separated without any a priori information 
 

Input 
interferograms	
  

Reconstructed 
source	
  

Reconstructed 
‘noise’	
  

Isolation of deformation 
from atmospheric signals 
also successful using the 
assumption of time 
independence …. but 
dimension estimation and 
computation is much harder 



Parícutin lava fields 
 
• Monogenetic eruption in 1943-1952 -> cinder cone and lava fields 100s of 
metres thick 
 
• Lava subsidence well constrained by InSAR studies: Fournier et al., 2010; 
Chaussard, 2016 
 
• Expectation: three patches  
of subsidence retrieved in the  
same component  
 
 
 

for two reasons: (1) it is close to the volcanic edifice and to the Sapichu
vent (Fig. 4) and (2) the flows post-1946 were thicker than the earlier
ones because of an increase in the lava viscosity (Fries, 1953). Thus, in
the main subsidence patch it is likely that close to 100% of the deposits
currently observed correspond to lava flows.

In the northwest patches, 9 and 6 flows are documented, half of
them being pre-1946, which correspond to an approximate lava thick-
ness of 90 and 60 m (Fig. 8b). The thicknesses of 90 m are observed in
the area with 150–125 m deposits (~70%), while the thicknesses of
60 m are observed in the area with 75 m of deposits (80%). In this
area the flows are further away from the vents and are mainly pre-
1946, thus they could be thinner than the 10 m average, making these
values upper bound estimates. However, Fries (1953) also showed
that near the end of flows the lava piles up in layers up to 30–40 m
thickness. Thus, these estimatesmay be underestimating the lava thick-
nesses and the near totality of the deposits in the northwest patches
could correspond to lava.

Unfortunately, there are no independent data about the thickness of
the ash and pyroclastic flow deposits that could be used to constrain
their proportion relative to the proportion of lava and to the total de-
posit thickness. Ash and pyroclastic flow deposits are expected to be
thicker near the edifice but differential erosion (larger on the slopes)
could also have redistributed thematerial. Additionally, the tropical cli-
mate of the area could have contributed to significant erosion of these
less consolidated materials in the past 60 years. Given the uncertainties
on the order of several meters for the thicknesses of the deposits

estimated from the pre- and post-eruption topographic maps and for
the thicknesses of the lava flows, the discrepancies between the total
deposit thickness (Section 5.1) and the lava thickness (Section 5.2) are
not significant. Thus, the estimated deposit thicknesses are considered
to correspond to mostly lava.

6. Causes of subsidence

Mechanisms used to explain subsidence near volcanoes are related
to (1) themagmatic system, such as deflationor cooling of amagma res-
ervoir, also amplified by hydrothermal cooling (2) tectonic or gravity
driven motions, such as extension in a graben or gravitational flank
movement, or (3) processes accompanying lava and deposit emplace-
ment (e.g., Newhall and Dzurisin, 1988; Poland, 2014; Dietterich et al.,
2012; Whelley et al., 2012). Parícutin is a monogenetic volcano, thus it
does not possess a magma reservoir (Luhr and Carmichael, 1985;
Hasenaka and Carmichael, 1985; Cervantes and Wallace, 2003; De la
Cruz-Reyna and Yokoyama, 2011), ruling out cooling of a magma sys-
tem as a potential cause of the observed subsidence (e.g. Parker et al.,
2014; Caricchi et al., 2014). Cooling of a hydrothermal system, once in
contact with a heat source (magma) at the time of eruption is unlikely
as it should be limited tomuch shorter time and spatial scales. Regional
extension would result in subsidence affecting a much larger area, and
flank motion would occur on steep slopes and include horizontal mo-
tion (e.g. Lundgren et al., 2004; Schaefer et al., 2015; Ebmeier et al.,
2014).

The remaining potential causes involve processes related to lava and
deposit emplacement, which are proportional to thematerial thickness,
as observed here. Compaction of void spaces and vesicles within the
lava are nearly instantaneous processes due to the loading of flows by
other flows (Stevens et al., 2001). Poroelastic deformation of the ground
caused by the lava gravity load occurs within days following the em-
placement (e.g., Wang (2000); Lu et al. (2005)). Viscoelastic strain re-
laxation also involves a rapid decay with time (Jaeger, 1969; Lu et al.,
2005), for a load emplaced 60 years ago and long Maxwell viscoelastic
relaxation times, the deformation expected is on the order of microme-
ter to millimeter per year. At Parícutin the lack of loading effects is also
confirmed by the absence of ground motion outside the lava flows, in
contrast with observations of young flows at Etna (Briole et al., 1997)
and Piton de la Fournaise (Delorme, 1994). Subsidence due to ground-
water level depletion in response to the application of the load, as doc-
umented in compressible deposits, is unlikely near Parícutin because of
its basaltic-andesitic substrate (Lhur and Simkin, 1993). Gravity-driven
repacking, rearrangement of the flow structure induced by cooling, and
erosion may also contribute to a small portion of the observed

Fig. 7. Subsidence rates against deposit thickness along the profiles of Fig. 6. A linear
relationship between increasing deposit thickness and subsidence rates is observed with
a slope of 0.025 cm/m and a coefficient of correlation R2 = 0.76.

Fig. 8. a) Parícutin's flow field showing the number of flows and their directions for 1943–1946 and 1947–1952 lavas in dashed and full lines, respectively, overlaying the subsidence
velocity map (modified from Rowland et al. (2009)). The white square shows the area covered by the pre-eruption topographic map (Fig. 6b). b) Number of flows pre- and post-1946
in areas with various subsidence rates and corresponding lava thicknesses considering an average flow thickness of 10 m.

6 E. Chaussard / Journal of Volcanology and Geothermal Research 320 (2016) 1–11

Chaussard, 2016 	
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-  Three patches of deformation extracted in one spatial component 

-  Three patches of deformation extracted in one spatial component  
-  > implies that source is the same  

-  Subsidence rates with error of previous ALOS measurements: 
  5.3 +/- 0.5 cm/yr , compared to 5.5 cm/yr 2007-10 

 



	
  	
  

Considerations for testing the independence of volcanic 
deformation signals: 

 
1.  Components/mixing matrices retrieved from spatial and 

temporal ICA can be compared to test their significance 
 -   

2.  Amendments can be made to decomposition procedure to 
test for correlated signals that are temporally offset from 
each other 

-  
3.  How should we interpret evidence of spatial/temporal 

correlation ? 
-   



	
  	
  

Considerations for identifying deformation and for 
automation 

 
1.  How are ‘relevant’ signals identified?  

-  a priori information about signal shape or duration 
-  matching ICs to past deformation (machine 

learning?) 
2.  What resolution to apply analysis? 

-  Need to know past spatial and temporal scales 
-  Nested approach, with higher resolution over 

active volcanoes 
3.  Regional or local application? 

-  Implications for Gaussianity of some components 
-  Size of co-variance matrix  
-  Statistical independence depends on spatial scale 



Application of independent component analysis to
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Abstract A challenge in the analysis of multitemporal interferometric synthetic aperture radar (InSAR)
data is distinguishing and separating volcanic, tectonic, and anthropogenic displacements from each other
and from atmospheric or orbital noise. Independent component analysis (ICA) is a method for decomposing a
mixed signal based on the assumption that the component sources are non‐Gaussian and statistically
independent. ICA has potential as a tool for exploratory analysis of InSAR data, and in particular for testing
whether geophysical signals are related or independent. This article presents tests of the applicability of ICA
to InSAR by using synthetic data and application to Sentinel‐1A archive images from two contrasting
examples of volcano deformation. Coeruptive subsidence associated with the April 2015 eruption of Calbuco
(Chile) was identified in spatial patterns found by maximizing both spatial and temporal independence.
Spatial patterns and rates of lava subsidence were retrieved by using ICA analysis of interferograms from
Parícutin lava fields (México) and found to be consistent with previous observations. I demonstrate that ICA is
an appropriate method for the analysis of volcanic signals in the presence of atmospheric noise and propose a
strategy for the reliable identification of geophysical displacements by using cluster analysis of the spatial
patterns of independent components. This approach allows the detection of geophysical processes on a
range of scales and provides a test of signal independence where multiple displacement sources are active.

1. Introduction

Interferometric synthetic aperture radar (InSAR) allows centrimetric tomillimetric movement of the ground to
be measured on the scale of tens to hundreds of kilometers at a spatial resolution of less than tens of meters
and temporal resolution of days to months [e.g., Bürgmann et al., 2000; Simons and Rosen, 2007]. InSAR mea-
surements have been used to measure deformation during all stages of the earthquake cycle [Massonnet
et al., 1993; Elliott et al., 2016] and to observe a broad range of processes that cause deformation at volcanoes
[Pinel et al., 2014; Biggs et al., 2014].

Here I present an application of a blind source separationmethod, independent component analysis (ICA), for
identifying and analyzing displacement signals in InSAR data. I describe the potential of the method, already
widely used in other branches of remote sensing,medical physics, andgeophysics, for application tomultitem-
poral InSARdata (section 2). I demonstrate its applicationby using sets of synthetic interferograms (section 3.1)
and analyze two contrasting styles of volcanic deformation by using Sentinel‐1 imagery acquired since the
instrumentˈs launch in 2014 (section 3.2).

1.1. Mixed Signals: Atmospheric and Geophysical Signals

A major challenge for using InSAR for the measurement of geophysical signals is the separation of true sur-
face displacements from atmospheric noise [e.g., Zebker et al., 1997; Beauducel et al., 2000]. Atmospheric sig-
nals in interferograms are the consequence of differences in the refractivity of the atmosphere between
satellite acquisitions caused by variations in concentrations of water vapor (“wet delay”) and hydrostatic pres-
sure (“dry delay”) [e.g., Hanssen, 2001]. Where the atmosphere is stratified, changes to water vapor concentra-
tion are correlated with topography and may mask deformation signals with similar or lower magnitude at
high relief faults and at volcanoes [e.g., Doin et al., 2009; Poland and Lu, 2004; Ebmeier et al., 2013]. Where tur-
bulent mixing is dominant, atmospheric signals are spatially correlated on the scale of tens of kilometers [e.g.,
Lohman and Simons, 2005].

Atmospheric signals can be mitigated in sets of interferograms by using approaches that increase the signal‐
to‐noise ratio. For example, stacking a set ofm independent interferograms reduces the standard deviation of
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Key Points:
• Independent component analysis is
appropriate for exploratory analysis of
InSAR data

• Deformation can be identified
automatically by cluster analysis of
independent components

• Application of ICA demonstrated on
Sentinel‐1A imagery using contrasting
volcanic examples
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• Supporting Information S1

Correspondence to:
S. K. Ebmeier,
s.k.ebmeier@leeds.ac.uk

Citation:
Ebmeier, S. K. (2016), Application of
independent component analysis to
multitemporal InSAR data with volcanic
case studies, J. Geophys. Res. Solid Earth,
121, 8970–8986, doi:10.1002/
2016JB013765.

Received 16 NOV 2016
Accepted 23 NOV 2016
Accepted article online 25 NOV 2016
Published online 16 DEC 2016

© 2016. American Geophysical Union.
All Rights Reserved.

Further details of method and tests with synthetic data:	
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