

### TOWARDS THE ASSIMILATION OF DEFORMATION DATA IN VOLCANOLOGY

MG BATO, V PINEL, Y YAN

# OUTLINE OFTHETALK

### Introduction

✓ Data assimilation: the Ensemble Kalman Filter (EnKF)

Reverso et al's two-chamber model

## Synthetic Case

State-parameter estimation

## Discussion

ĭ Using GNSS vs. InSAR data

✓ Joint assimilation of GNSS and InSAR data

✓ Comparison of EnKF with bayesian-based inversion (MCMC)

## Key Points

### **References:**

 Bato MG, Pinel V, Yan Yajing (2017) "Assimilation of Deformation Data for Eruption Forecasting: Potentiality Assessment Based on Synthetic Cases". Front. Earth Sci. 5:48. doi: 10.3389/feart.
 2017.00048

[2] Bato MG, Pinel V, Yan Yajing (2016) "Volcano Deformation and Eruption Forecasting using Data Assimilation: Building the Strategy". AGU Fall Meeting, San Francisco, USA

### **Press Mentions:**

[1] Volcano Forecast? New Technique Could Better Predict Eruptions, Scientific American
[2] Scientists are trying to use satellites to forecast volcanic eruptions, CNBC
[3] Think weather forecasts are bad? Try forecasting a volcanic eruption, Popular Science
[4] Predicting eruptions using satellites and math, Eurekalert
[5] Scientists predict volcanic eruptions with satellites and GPS, CNN Tech

## HOW DO WE KNOW IF A VOLCANO IS ABOUT TO ERUPT?

Key parameter: Overpressure

As the pressure accumulates, the volcano becomes unstable.Volcanic eruption can occur if it surpasses a critical threshold overpressure.









Bato et. al. 2016





# - Almost no difference



# DATA ASSIMILATION: GENERAL IDEA

- Models are incorporated by errors
    $x_{t+1} = \mathcal{M}x_t + q$
- Observations are not free of noise
   D =  $\mathcal{H}x^{\dagger} + \epsilon$
- Model-data fusion technique

# DATA ASSIMILATION: GENERAL IDEA

Data assimilation is a sequential time-forward process that best combines models and observations, sometimes a priori information based on error statistics, to predict the state of a dynamical system.

# DATA ASSIMILATION: GENERAL IDEA



## ASSIMILATION SCHEME: ENSEMBLE KALMAN FILTER

Model Error Covariance 
$$P^{f} = \overline{(x^{f} - \overline{x^{f}})(x^{f} - \overline{x^{f}})^{T}}$$
$$P^{a} = \overline{(x^{a} - \overline{x^{a}})(x^{a} - \overline{x^{a}})^{T}}$$



# THE TWO-CHAMBER MODEL



#### **Overpressures**

$$\frac{\Delta P_{s_{t_{i+1}}} - \Delta P_{s_{t_i}}}{t_{i+1} - t_i} = \frac{Ga_c^4}{8\mu\gamma_s H_c a_s^3} ((\rho_r - \rho_m)gH_c + \Delta P_{d_{t_i}} - \Delta P_{s_{t_i}})$$

$$\frac{\Delta P_{d_{t_{i+1}}} - \Delta P_{d_{t_i}}}{t_{i+1} - t_i} = \frac{G}{\gamma_d \pi a_d^3} Q_{in} - \frac{\gamma_s a_s^3}{\gamma_d a_d^3} \frac{\Delta P_{s_{t_{i+1}}} - \Delta P_{s_{t_i}}}{t_{i+1} - t_i}$$

### **Overpressure-Displacement Relationship**

$$u_R(r,t_i) = \frac{(1-v)}{G} r \left( \alpha_s \frac{a_s^3}{R_s^3} \Delta P s_{t_i} + \alpha_d \frac{a_d^3}{R_d^3} \Delta P_{d_{t_i}} \right)$$
$$u_z(r,t_i) = \frac{(1-v)}{G} \left( H_s \alpha_s \frac{a_s^3}{R_s^3} \Delta P s_{t_i} + H_d \alpha_d \frac{a_d^3}{R_d^3} \Delta P_{d_{t_i}} \right)$$



# THE TWO-CHAMBER MODEL



For our assimilation scheme, 2 model parameters are fixed to be uncertain:

- ✓ The radius of the deep reservoir: *a*<sub>d</sub>
- ✓ Basal magma inflow rate: Qin



# SYNTHETIC CASE

State-Parameter Estimation (estimating the overpressures and the uncertain parameters)

# SYNTHETIC CASE: STRATEGY



The assimilation interval, ∆t = 2 days
The frequency of available observation is also 2 days.
80 observations are used for the synthetic cases.
✓ 40 radial and 40 vertical

# CASE: STATE-PARAMETER ESTIMATION







Time, years

EnKF-predicted Displacements

### - Observations used in EnKF



# FURTHER DISCUSSIONS ON THE USE OF DEFORMATION DATA

## GNSS VS. INSAR: HOW **SPATIAL** RESOLUTION AFFECTS THE ASSIMILATION



### **GNSS dataset:**

The assimilation interval,  $\Delta t = 2 \text{ days}$ 

The frequency of available observation is also 2 days.

10 observations are used for the synthetic cases.

g 5 radial and 5 vertical

## GNSS VS. INSAR: HOW **SPATIAL** RESOLUTION AFFECTS THE ASSIMILATION

Radial Displacement, u Vertical Displacement, u 20 20 0.27 0.072 15 15 0.24 0.064 0.21 10 10 0.056 0.18 5 5 0.048 meters 0.15 neters 0.040 0 0 0.12 0.032 5 5 0.09 0.024 10 10 0.06 0.016 15 15 0.03 0.008 20⊾ 20 20 20 0.000 0.0020 15 10 5 0 5 10 15 15 10 5 5 10 15 20

### **InSAR dataset:**

The assimilation interval,  $\Delta t = 2 \text{ days}$ The frequency of available observation is also 2 days. **242 observations** are used for the synthetic cases. In 11x11 radial and 11x11 vertical





## GNSS VS. INSAR: HOW **TEMPORAL** RESOLUTION AFFECTS THE ASSIMILATION



### **GNSS dataset:**

The assimilation interval,  $\Delta t = 2$  days

The frequency of available observation is also **2 days**. 10 observations are used for the synthetic cases.

g 5 radial and 5 vertical

## GNSS VS. INSAR: HOW **TEMPORAL** RESOLUTION AFFECTS THE ASSIMILATION

Radial Displacement, u Vertical Displacement, u 20 20 0.27 0.072 15 15 0.24 0.064 0.21 10 10 0.056 0.18 5 5 0.048 meters 0.15 neters 0.040 0 0 0.12 0.032 5 5 0.09 0.024 10 10 0.06 0.016 15 15 0.03 0.008 20⊾ 20 20 20 0.000 0.0020 15 10 0 5 10 15 15 10 5 5 10 15 20

### **InSAR dataset:**

The assimilation interval,  $\Delta t = 2$  days

The frequency of available observation is **every 12 days**. 242 observations are used for the synthetic cases.



# JOINT ASSIMILATION GNSS AND INSAR



#### **GNSS dataset:**

The assimilation interval,  $\Delta t = 2$  days The frequency of available observation every 2 days.

**10 observations** are used for the synthetic cases.

#### InSAR dataset:

The assimilation interval,  $\Delta t = 12 \text{ days}$ The frequency of available observation is every 12 days.

**242 observations** are used for the synthetic cases.





# JOINT ASSIMILATION GNSS AND INSAR-LOS





#### **GNSS dataset:**

The assimilation interval,  $\Delta t = 2$  days The frequency of available observation every 2 days.

**10 observations** are used for the synthetic cases.

#### InSAR dataset:

The assimilation interval,  $\Delta t = 12 \text{ days}$ The frequency of available observation is **every 12 days. 121 observations** are used for the synthetic cases.

11x11 LOS data in either
 ascending or descending pass

#### A) Estimated Overpressures



**B)** Estimated Uncertain Parameters



# ENKFVS. BAYESIAN INVERSION

# ENKFVS. BAYESIAN INVERSION



The assimilation interval, ∆t = 2 days
The frequency of available observation is also 2 days.
80 observations are used for the synthetic cases.
✓ 40 radial and 40 vertical



#### A) Estimated Overpressures



# KEY POINTS

### \* Efficient model-data fusion technique to forecast effusive eruptions

- ✓ Overpressures can be estimated if:
  - Prior information about uncertain parameters are well constrained
  - If uncertain parameters are also estimated

### GNSS vs. InSAR

- ✓ GNSS can recover the true evolution of the overpressures because of its good temporal resolution
- ✓ InSAR can better constrain uncertain parameters because of its high spatial resolution
- ☞ Joint assimilation of these datasets are successfully presented for the first time

### \* Data assimilation (EnKF) vs. Bayesian-based inversion (MCMC)

- Similar capabilities when estimating uncertain parameters
- ☞ EnKF can be used to forecast in near-real time
- ✓ EnKF may be able to track time-dependent uncertain parameters

\* Framework is simple yet offers a great potential towards a more deterministic eruption forecasting and better understanding of the magma plumbing system

Merci!

#### Piled Higher and Deeper by Jorge Cham

#### www.phdcomics.com



www.phdcomics.com

title: "Conference" - originally published 8/25/2004