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HOW DO WE KNOW IF A VOLCANO IS ABOUT TO 
ERUPT?

Key parameter: Overpressure

As the pressure accumulates, 
the volcano becomes 
unstable. Volcanic eruption can 
occur if it surpasses a critical 
threshold overpressure.



after Reverso et. al 2014

Bato et. al. 2016
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DATA ASSIMILATION: GENERAL IDEA

 Models are incorporated by errors 
  

 Observations are not free of noise 
 

 Model-data fusion technique
D = Hx

† + ✏

xt+1 = Mxt + q



DATA ASSIMILATION: GENERAL IDEA

Data assimilation is a sequential time-forward process 
that best combines models and observations, sometimes 
a priori information based on error statistics, to predict 

the state of a dynamical system. 



DATA ASSIMILATION: GENERAL IDEA
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ASSIMILATION SCHEME: ENSEMBLE KALMAN FILTER
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Sanchez, 2016
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THE TWO-CHAMBER MODEL
Overpressures

modified after Reverso et. al. 2014
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THE TWO-CHAMBER MODEL

For our assimilation scheme,  
2 model parameters are fixed to 
be uncertain:

Radius of the deep reservoir ad
(m)

Bottom magma inflow rate Qin
(km3 y-1)modified after Reverso et. al. 2014

The radius of the deep 
reservoir: ad 

Basal magma inflow rate: Qin



State-Parameter Estimation (estimating the 
overpressures and the uncertain parameters)

SYNTHETIC CASE



SYNTHETIC CASE: STRATEGY

1-5 km
GNSS locations

The assimilation interval, 
The frequency of available observation is also 2 days.  
80 observations are used for the synthetic cases. 

40 radial and 40 vertical

�t = 2 days
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FURTHER DISCUSSIONS ON THE 
USE OF DEFORMATION DATA



GNSS VS. INSAR: 
HOW SPATIAL RESOLUTION AFFECTS THE ASSIMILATION

1-5 km
GNSS locations

GNSS dataset: 
The assimilation interval, 
The frequency of available observation is also 2 days.  
10 observations are used for the synthetic cases. 

5 radial and 5 vertical

�t = 2 days



GNSS VS. INSAR: 
HOW SPATIAL RESOLUTION AFFECTS THE ASSIMILATION

InSAR dataset: 
The assimilation interval, 
The frequency of available observation is also 2 days.  
242 observations are used for the synthetic cases. 

11x11 radial and 11x11 vertical

�t = 2 days
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GNSS VS. INSAR: 
HOW TEMPORAL RESOLUTION AFFECTS THE ASSIMILATION

1-5 km
GNSS locations

GNSS dataset: 
The assimilation interval, 
The frequency of available observation is also 2 days.  
10 observations are used for the synthetic cases. 

5 radial and 5 vertical

�t = 2 days



GNSS VS. INSAR: 
HOW TEMPORAL RESOLUTION AFFECTS THE ASSIMILATION

InSAR dataset: 
The assimilation interval, 
The frequency of available observation is every 12 days.  
242 observations are used for the synthetic cases. 

11x11 radial and 11x11 vertical

�t = 2 days
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JOINT ASSIMILATION
GNSS AND INSAR

1-5 km
GNSS locations

GNSS dataset: 
The assimilation interval, 
The frequency of available observation 
every 2 days.  
10 observations are used for the 
synthetic cases. 

5 radial and 5 vertical

�t = 2 days
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InSAR dataset: 
The assimilation interval, 
The frequency of available observation is 
every 12 days.  
242 observations are used for the synthetic 
cases. 

11x11 radial and 11x11 vertical

�t = 12 days
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JOINT ASSIMILATION
GNSS AND INSAR-LOS

1-5 km
GNSS locations

GNSS dataset: 
The assimilation interval, 
The frequency of available observation 
every 2 days.  
10 observations are used for the 
synthetic cases. 

5 radial and 5 vertical

�t = 2 days
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InSAR dataset: 
The assimilation interval, 
The frequency of available observation is 
every 12 days.  
121 observations are used for the synthetic 
cases. 

11x11 LOS data in either 
ascending or descending pass

�t = 12 days
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ENKF VS. BAYESIAN INVERSION



ENKF VS. BAYESIAN INVERSION

1-5 km
GNSS locations

The assimilation interval, 
The frequency of available observation is also 2 days.  
80 observations are used for the synthetic cases. 

40 radial and 40 vertical

�t = 2 days



Bottom magma inflow rate Qin
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A) Estimated Overpressures B) Prior Distribution of
Uncertain Parameters
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KEY POINTS
 Efficient model-data fusion technique to forecast effusive eruptions 

 Overpressures can be estimated if:
 Prior information about uncertain parameters are well constrained
 If uncertain parameters are also estimated

 GNSS vs. InSAR 
 GNSS can recover the true evolution of the overpressures because of its good 
temporal resolution
 InSAR can better constrain uncertain parameters because of its high spatial 
resolution
 Joint assimilation of these datasets are successfully presented for the first time

 Data assimilation (EnKF) vs. Bayesian-based inversion (MCMC) 
 Similar capabilities when estimating uncertain parameters
 EnKF can be used to forecast in near-real time
 EnKF may be able to track time-dependent uncertain parameters

 Framework is simple yet offers a great potential towards a more deterministic 
eruption forecasting and better understanding of the magma plumbing system



Merci ! 


