InSAR Processing

1

Sentinel 1 data Case study of subsidence in Mexico city

Marie-Pierre Doin, Cécile Lasserre, Raphaël Grandin, Erwan Pathier

NSBAS processing chain (based on ROI_PAC):

ROI-PAC: Rosen et al., 2004

(Rosen, P. A., S. Hensley, G. Peltzer, and M. Simons, Updated Repeat Orbit Interferometry Package released, Eos, 85, p. 47, 2004)

NSBAS: Doin et al. 2011

(Presentation Of The Small Baseline NSBAS Processing Chain On A Case Example: The ETNA Deformation Monitoring From 2003 to 2010 Using ENVISAT Data

Doin, M.-P.; Lodge, F; Guillaso, S; Jolivet, R; Lasserre, C; Ducret, GI; Grandin, R., Pathier, E; Pinel, V, Proceeding of Fringe 2011)

Sentinel-1: Grandin 2015

(Interferometric Processing of SLC Sentinel-1 TOPS Data, DOI: 10.5270/Fringe2015.pp116)

Démarrage du TP:

On the screen, choose "02-Portail Pédagogique VM".

On the new screen "client VMWARE Horizon" click twice on **sciportail.dsi.uca.fr** Then click on connexion

Login and passwd : tmp.nsbasXX et nsbasXXXX,

Click on NSBAS

Then appears :

NO PASSWORD, JUST TYPE ENTER!!

Open a terminal with:

Applications \rightarrow Accessoires \rightarrow Terminal Open a second terminal : Fichier \rightarrow Ouvrir un terminal

A few commands :

cd : change directory ls : list content of a directory pwd : where you are googleearth /nsbas/MDX/mdx.pl : launch vizualisation tool gthumb (to view jpg/png) / evince (to view pdf)

Data : downloaded using the etalab web service Here descending track Relative orbit number : 143

Data : downloaded using the etalab web service Here descending track Relative orbit number : 143

ForMaTer				
ACCUEIL DONNE	ES A PROPOS AIDE	MON SE CONNEG PANIER	CTER S'ENREGISTRE	ĒR
		Instrument: STRAITEMEN	ITS There Q orbite: 10715	
1	Pays : MEXICO Date : 2016-04-07T00:25:31.822Z Sens de l'orbite: descending	Résolution : polarisation : VV Taille de l'image : 2.538795033 Go	Niveau de traitement : LEVEL1 Mode du capteur : IW Type de produit : SLC	VOTRE PANIER !
2	Collection : S1 Localisation: NORTH-AMERICA Pays : MEXICO Date : 2016-03-31T00:33:36.103Z Sens de l'orbite: descending	Instrument : SAR-C SAR Plateforme : S1A Résolution : polarisation : VV Taille de l'image : 2.530584772 Go	Numéro d'orbite : 10613 Niveau de traitement : LEVEL1 Mode du capteur : IW Type de produit : SLC	📜 Ajouter au panier
3	Collection : S1 Localisation: NORTH-AMERICA Pays : MEXICO Date : 2016-03-26T00:25:31.048Z	Instrument : SAR-C SAR Plateforme : S1A Résolution : polarisation : VV Taille de l'image :	Numéro d'orbite : 10540 Niveau de traitement : LEVEL1 Mode du capteur : IW Type de produit : SLC	IMAGE MISE DANS VOTRE PANIER !

Data : downloaded using the etalab web service Here descending track Relative orbit number : 143

ForM	ег			Mon Pa	nier		
ACCUEIL	DONN	EES APROP	OS AIDE	WON PANIER	SE CONNE	CTER S'ENREGIS	TRER
					TRAITEMEN	NTS - Q	
1		COLLECTION: S LOCALISATION : DATE : 2016-03-26T00. TAILLE DE L'IMAG : 2.173920388 Go	Calcul M Déscripti ACCES CI	NT ion de la c HAINE NSE	chaine NSE AS	RO D'ORBITE : 3 A S 10540 .U DE TRAITEME 	聞 Retirer du panier
2		COLLECTION: S1 LOCALISATION : DATE : 2016-04-07T00: TAILLE DE L'IMAG : 2.538795033 Go	Mexico 25:31.822Z 5E 5	INSTRUMEN PLATEFORMI RESOLUTION	T: SAR-C SAR E: S1A N: null	NUMERO D'ORBITE : 10715 NIVEAU DE TRAITEMEN LEVEL1 MODE DU CAPTEUR : IW TYPE DE PRODUIT :	聞 Retirer du panier

Processing based on NSBAS chain (Doin et al., 2011, Grandin 2016) "lancer le calcul"

CALCUL DE L'INTERFEROGRAMME

Produits sélectionnés dans le panier:

b61d0a68-65fb-58e4-8ae3-32d365c6880e;34d35fc

Jeton:

f0319571-bfa4-41d5-b471-3e4d352013d9

Fauchée:

1

Lancer le calcul

Results : only major outputs of NSBAS will be available to download

Processing based on NSBAS chain (Doin et al., 2011, Grandin 2016) "lancer le calcul"

PARIER
CALCUL DE L'INTERFEROGRAMME
Produits sélectionnés dans le panier:
b61d0a68-65fb-58e4-8ae3-32d365c6880e;34d35fc1-887b-5d44-8c6f-8
Jeton:
f0319571-bfa4-41d5-b471-3e4d352013d9
Fauchée:
1
Lancer le calcul
Télécharger le résultat
Info
{
"StatusInfo": {
"JobID": 3607988, "Progress": 50.
"Retcode": "0",
"Status": "Terminated", "processToken": "f8319571_bfs4_41d5_b471_3e4d352013d9"
}
3

Results : only major outputs of NSBAS will be available to download

Interferograms processing: case 2: nsbas

Now, let us look at the results of the process

\$ cd /nsbas/MEXICO
\$ ls
DEM iw3 RAW
\$ cd RAW
\$ ls
List of data to download on descending track 143
\$ gedit mexico_D143.json

Example of a SAFE directory

Data download from PEPS

Example of .json original input file to prepare for automatic data download

Data download from PEPS

11

Example of .json after exploring PEPS archive with previous selection parameters. A list of images to download appears.

```
],
  art-date": "2012-08-01".
"urls": {
                            25T122529_20170225T122556_015440_019589_1507": [
        "64c2da20-e418-540a-b3aa-09b458ae6795".
        4641137494.
        "2017-02-28T00:18:12.648Z",
        "disk"
   ],
"SIA_IW_SLC__1SDV_20170225T122554_20170225T122620_015440_019589_8457": [
        "5e0260fd-479c-578f-b55e-9336116668d7".
        4753055802.
        "2017-03-02T21:06:05.502Z".
        "disk"
   ],
||S1A_IW_SI
                                   529 20170309T122556 015615 019AD5 4767": [
        "864c6742-4fa6-5c20-bb29-195c4928b2a7".
        4689505710.
        "2017-03-12T00:46:14.309Z".
        "tape"
   ].
"SIA IW_SLC__1SDV_20170309T122554_20170309T122621_015615_019AD5_488D": [
        "68788abe-b6b0-5ebc-84bc-5bf91b06171c".
        4758821859,
        "2017-03-12T00:44:14.401Z".
        "tape"
   ]
              C 1SDV 20170321T122529 20170321T122556 015790 01A00C 76C7":
        "Ocde1343-1116-597a-8ba7-1573d8146549".
        4647995057.
        "2017-03-21T15:43:12.148Z".
        "tape"
    1,
```

SAFE name

Is /nsbas/MEXICO/RAW Is /nsbas/MEXICO/RAW/*SAFE :

manifest.safe: general information annotation: xml description of data measurement : data on iw1/iw2/iw3

12

Data download from PEPS

\$ gthumb /nsbas/MEXICO/RAW/*SAFE/preview/quick-look.png here we choose iw3

Other preliminary step : DEM download

Automatic ftp of SRTM 30 m from USGS, englobing all downloaded Sentinel-1 frames Geoid EGM96 added

\$ /nsbas/MDX/mdx.pl /nsbas/MEXICO/DEM/srtm30_-99_-96_17_20.dem -z -8 -wrap 200 Right click on button : change color scale Middle click on other button : but amplitude + color

Step 1: create working space, make links extract metadata, and bursts limits

Common bursts selection before SLC processing

15

Step 2: SLC formation

Stitch all bursts in a single image cutting overlap in the middle \$ /nsbas/MDX/mdx.pl 20160922/20160922.slc -z -8 Zoom in /out

\$ /nsbas/MDX/mdx.pl 20160922/20160922.slc -z -8 Zoom in /out You can compare with googleearth /googlemap, see target response to illuminating radar waves in streets or on vegetation

Zoom 1 (Master)

Zoom 2 (Master)

🛞 🗆 🗉 20160922.slc	
Application Display Set Zoom Select Print Tools	Help
Z00M: 1×	
	24.7. A 20.
and the second	
C8-Mag C8-Pha	Close
	1

Step 3: compute perpendicular baseline

Small orbital tube + large bandwidth: little geometrical decorrelation, and little sensitivity to topography \$ gthumb plot_baseline_top_bot.png \$ gedit baseline.rsc

Step 4: DEM simulation in Master data radar geometry

We compare simulated amplitude image and radar amplitude image to place DEM exactly in SAR geometry. Look similarities / discrepancies between both images:

\$ /nsbas/MDX/mdx.pl 20160922/SIM_20160922.hgt -z -8 \$ /nsbas/MDX/mdx.pl 20160922-20160922.cor -z -8

Simulation-Master coregistration

Automatic offset detection by image correlation. If fails, zero offset assumed. \$ /nsbas/MDX/PlotOffset.pl 20160922/ampmag.off

Simulation-Master coregistration

\$ /nsbas/MDX/PlotOffset.pl 20160922/ampmag_cull.off

Zoom, After iteratively removing all outliers : it defines a distortion function

Simulation-Master coregistration

Distortion affine function \$ gedit 20160922/cull.out

Estimated parameters for coregistration

<< Fitoff Program >>		
Number of points remaining =	1413	
RMS in X = 0.463464680005555	RMS in Y =	0.394896903859968
Matrix Analysis		
Affine Matrix		
1.0000146293 0.0000246219 -0.0000247180 0.9997935588		
Translation Vector		
0.602 -0.266		
Rotation Matrix		
0.9999999997 0.0000247176 -0.0000247176 0.9999999997		
Rotation Angle (deg) = -1.4162143	25846281E-003	
Axis Scale Factors		
1.0000146 0.9997936		
"20160922/cull out" 351 5660		

DEM simulation in Master data radar geometry

Final DEM in radar geometry \$ /nsbas/MDX/mdx.pl 20160922/radar_2rlks.hgt -z -4

Step 5: Coregistration slaves to master

All slcs from "slave" acquisitions should be resampled in master geometry. Step based on orbit and image correlation

\$ evince plot_coregistration.pdf

Coregistration graph (coregistration.dot)

Baseline information for one selected pair of images

To view a priori offset file : \$ gedit 20160219/20160922_20160219_baseline.rsc

(2) Applications Raccourcis ma (2)					
😕 🗆 🗉 Terminal					
Fichier Édition Affichage Rechercher Terminal Ong	glets Aide				
Terminal	3 £	Terminal			
INE_SPAN_YEAR H_BASELINE_TOP_HDR H_BASELINE_ACC_HDR V_BASELINE_ACC_HDR V_BASELINE_ACC_HDR V_BASELINE_ACC_HDR P_BASELINE_ACC_HDR P_BASELINE_OFF_HDR ORB_SLC_AC_OFFSET_HDR ORB_SLC_R_OFFSET_HDR PHASE_CONST_HDR 	-0.59154688569473 -17.6178445138445 1.145266479076540-05 2.263337614835810-13 -12.0342052348922 -5.107103164933970-06 9.278769825638080-14 6.87694289019707 4.96835406616014 -3.22127996336553 -8.57524470281092 0 -999999				
20100219/20100922_20100219_06Settne.rsc* 13L, 930C					

Slave-Master coregistration

To plot estimated offset between slave and master:

Should be accurate to 1/100th of pixel !!!

\$ /nsbas/MDX/PlotOffset.pl 20160219/20160922-20160219_ampcor.off \$ /nsabs/MDX/mdx.pl 20160219/20160219_coreg.slc -z -8

Example for one pair

Step 6: Interferogram computation

Interferograms for temporal baseline < 0.16 years : preserve coherence \$ gthumb plot_interferograms.png

Interferogram network

Interferogram computation

Coherence even in vegetated area (noisier) \$ /nsbas/MDX/mdx.pl INT/int_20160219_20160407/20160219-20160407_2rlks.int \$ /nsbas/MDX/mdx.pl INT/int_20160219_20160407/20160219-20160407_16rlks.int

Step 7: Spectral diversity correction step

\$/nsbas/MDX/mdx.pl INT_sd/int_20160126_20160219/20160126_ovl_004_bw-20160219_ovl_004_bw_col_4rlks.in
\$ /nsbas/MDX/mdx.pl INT_sd/int_20160126_20160219/20160126_ovl_004_fw-20160219_ovl_004_fw_col_4rlks.inf

\$ /nsbas/MDXmdx.pl INT_sd/int_20160126_20160219/20160126-20160219_ovl_004_xint_4rlks.int

Forward and Backward interferograms in bursts overlap.

Their difference contains the residual mis-registration term between master and slave and has to be estimated for correction of interferograms

Applications Raccourcis	1	🌍 🖾 📼 😤 🖛	22:44 💄 Marie Pierre Doin 🔱	
8 - 20160126_ovl_004_bw-	20160219_ovl_004_bw_col_4rlk	s.Int		
Application Display Set Zoon S	elect Frint Tools		Help	
			and the second	
تا ا			N	
Lt-Yag	J3+ha		U.oce	
(× ← =) 20160126_ovl_004_fw-	20160219_ovl_004_fw_col_4rlks	Int		
Application Display Set Zoom S	elect Frint Tools		Help	
			R	
CC Mag	00 Fi+e		Close	
× - = 20160126-20160219_ov	l_004_xint_4rlks.int			
Application Display Set Zoon Select Frint Locis Halp				
200M: 1> COL: 010 ROJ: ** 0.000	CE:(((* 0.000)E:)))*			
			Contraction in	
- -			N N N N N N N N N N N N N N N N N N N	
CE-Mag	C8-FHs		Close	

31

The spectral diversity phase is plotted for all overlaps :

\$ evince

INT_sd/int_20160126_20160219/20160126_coreg_Overlap_20160219_coreg_Overlap _sdFit.pdf

See all in INT_sd/all_sdFit with gthumb

An affine function of range and azimuth is adjusted through these SD phase measurements.

Inversion of spectral diversity affine functions $\Delta \Phi$ Fw-Bw = a + by + cz

Quality check after inversion of residual mis-registration ramps estimated for all interferograms in bursts overlap (small baseline inversion procedure)

\$ xmgrace -block invers_sd_int/inverted_cst_interf -bxy 3:4
\$ xmgrace -block invers_sd_int/inverted_lin_interf -bxy 3:4
\$ xmgrace -block invers_sd_int/inverted_quad_interf -bxy 3:4

May resolve 2pi error in spectral diversity phase estimation

Observed spectral diversity (X-axis) versus Inversed spectral diversity (Y-axis)

Spectral diversity correction

\$ /nsbas/MDX/mdx.pl INT/int_20160219_20160407/20160219-20160407_16rlks.int \$ /nsbas/MDX/mdx.pl INT/int_20160219_20160407/20160219-20160407_sd_16rlks.int

Before correction

After correction

33

Step 8: Correction of stratified atmospheric delay

Example of dry delay vertical profile \$ xmgrace ERA/96_348_12h/*del \$ /nsbas/MDX/mdx.pl ERA/20161022_mdel_2rlks.unw

\$ gthumb INT/int_JPG/20160501-20160513_sd_16rlks.int.jpg \$ gthumb INT/int_JPG/20160501-20160513_sd_era_16rlks.int.jpg \$ gthumb INT/int_JPG/20160501-20160606_sd_16rlks.int.jpg \$ gthumb INT/int_JPG/20160501-20160606_sd_era_16rlks.int.jpg

Step 9 : Interferogram filtering and unwraping

Multilooking, filtering

\$ cd INT

\$ /nsbas/MDX/mdx.pl INT/int_20160126_20160314/20160126-20160314_col_sd_era_atmo_flatr_4rlks.int
\$ /nsbas/MDX/mdx.pl INT/int_20160126_20160314/filtSW_20160126-20160314_col_sd_era_atmo_flatr_4rlks.int

Unwrapping

\$/nsbas/MDX/mdx.pl INT/int_20160126_20160314/filtSW_20160126-20160314_col_sd_era_atmo_flatr_4rlks.unw \$/nsbas/MDX/mdx.pl INT/int_20160126_20160314/20160126-20160314_col_sd_era_atmo_flatr_4rlks.unw

Step 10 : Geocoding

Interferogramme en géométrie radar:

\$ /nsbas/MDX/mdx.pl int_20160501_20160606/geo_20160501-20160606_col_sd_era_atmo_flatr_4rlks.unw

 $googleearth \rightarrow load$

int_20160501_20160606/geo_20160501-20160606_col_sd_era_atmo_flatr_4rlks.unw.jpg.kml

