Data adaptive analysis of geodetic time series

Damian Walwer, Eric Calais, Michael Ghil Département de Géosciences de l'ENS

MDIS - 18 Octobre 2017

Quasi periodic occurrences of slow slips at the Guerrero subduction zone

Usefull to study faults systems **dynamics**

Radiguet et al., 2012

Postseismic deformation recorded after the Maule earthquake (Mw 8.8), Chile, 2010

Usefull to constrain the **dynamics** of viscous relaxation of the mantle after large earthquake

Klein et al. 2016

Inflation and deflation of Kilauea summit

Allow to study the **dynamics** of eruptive cycles

Dvorak and Okamura, 1987

Give information about the **qualitative dynamics** of geological systems

$$\frac{d\mathbf{y}}{dt} = \mathbf{F}(\mathbf{y})$$

 $\mathbf{y} = (y_1, y_2, ...)$ variables to specify the state of a system

Not so easy sometimes to access qualitative dynamics !

see e.g. Broomhead and King, 1986 ; Vautard and Ghil, 1989

First order : linear displacement associated with rigid mouvements of plates or elastic strain accumulation near active faults

Fu et al. 2013

- Seasonal oscillations (annual and semiannual)
- Amplitude : millimiter / centimeter

GPS time series

 Cause : Elastic loads triger by atmospheric, oceanic and hydrologic mass mouvement

GPS time series

- Transient mouvements
- Amplitude : variable
- Periode : variable
- Cause : volcanic processes, tectonic (slow earthquakes), hydrology

GPS time series

Challenge : identify these structures, separate them from the noise as well as from other signals

How to do this?

The M-SSA (Multichannel Singular Spectrum Analysis)

Exploit simultaneously the spatial and temporal correlations of geophysical fields

The resolution of the eigen value problem

functions (EOF)

Eigen values

Projection of the time series on the EOF gives the Principal components (PC)

$$\mathbf{A}=\mathbf{X}\mathbf{E};$$

- The M-SSA exploit simultaneously the spatial and temporal correlations of GPS time series
- Define Empirical eigen vectors = Data-adaptive = No use of a priori hypothesis

	North	East	Up
AV06	10 mm	10 mm	L 10 mm
AV07		1	
AV08			
AV10			
AV12			
AV13			
AV14			
AV15			
	2007 2010 2013	2007 2010 2013	2007 2010 2013
	time (year)	time (year)	time (year)

- Noise in the GPS time series
- Seasonal signal
- Transient signal sometimes readily visible

Up

East

Conclusion

- M-SSA exploits spatial and temporal correlations of geophysical fields
- M-SSA is able to discriminate between different kind of signals
- M-SSA allows to extract from noise small transients displacements embeded in time series
- No use of a priori information

Reserved slides

Saltzmann 1962, Lorenz 1963