
A2S:	PROCESSING	SYSTEM	FOR	THE	RAPID	EXPLOITATION	
OF	SATELLITE	DATA	STREAMS	ON	HPC	PLATFORMS:	

SOME	EXAMPLES	FOR	SOLID	EARTH	RESEARCH	
FOCUS	ON	MONITORING	ISSUES	

David	MICHÉA	-		michea[@]unistra.fr	
Ing.	Scien-fic	Calcula-on	
	
Bernard	ALLENBACH,	Jean-Philippe	MALET,	Anne	PUISSANT,	André	STUMPF	
	
	
University	of	Strasbourg	

Context (project start March 2016)

q  Construct a dedicated High Performance Computing infrastructure for a fully automated processing of S1/S2

data to detect changes on 3 topics related to science-driven applications:
•  the quantification of earth surface movements (e.g. landslides, reservoirs and anthropogenic hazards)
•  the quantification of continental water surfaces (surface water reservoirs, flooding)
•  the quantification of urban changes

q  Develop and implement generic tools to classify and interpret changes in time series using supervised
(machine learning) and unsupervised approaches

deformation water applications urban applications

A local HPC infrastructure for research applications
on change detection techniques using S1/S2

Dimensions of the infrastructure

•  Sensors: Sentinel (S1/S2), Landsat (L7/L8) – (phase 1), VHRS optical – (phase 2)
•  Processing capacity in terms of spatial coverage: 1000 x 1000 km (phase 1), 5000 x 5000 km (phase 2)
•  Automatic processing in near-real time: day+1 of data reception, processing finalized in less than 24hrs, on

selected regions
•  On-demand processing
•  Dissemination of the processed data

A2S: Environment

Landcover/use
UrbanizaRon

Surface	waters

Generic
change	detecRon

H.	Yésou

A.	Puissant P.	Gançarski

Coordina-on:
B.	Allenbach

Ground
movements

J.-P.	Malet

Funding

• State + Region: CPER (infrastructure)
• State: FNADT (IT engineer)

• Research projects:
o CNES TOSCA, CNES R&D, ESA Alcantara: remote sensing algorithm development
o ANR TIMES (start on 1/12/2017): change detection techniques (e.g. machine learning) developement

Structure Ground Movements

à Optical data

•  Fine co-registation of stacks of S2/L8 time series –
CO-REGIS (EOST)

•  Mutiple Pairwise Image Correlation for landslide,
volcano-tectonic and co-seismic slip displacement
monitoring – MPIC-OPT (EOST)

•  Detection of landslides from pre/post)event
imagery – ALADIM (EOST)

•  Generation of VHR DSM from Pléiades / Spot6-7
– DSM-OPT (EOST)

à SAR data

•  L a n d s l i d e s a n d s u b s i d e n c e
monitoring from times series of
wrapped, unwrapped and geocoded
interferograms and t ime serie
analysis – NSBAS-S1 (ISTerre)

Processing capacity: Phase 1 - Operational

Storage: Phase 1 - Operational

At Unistra Mesocentre : 20 nodes - 560 cores 50 nodes = 1400 cores
 1 node = 28 cores (phase 2 / 2018)

High bandwidth dedicated IO cache system (17 To)

Priority calculation on A2S nodes, and possibility to use additional distributed ressources

High bandwidth network between HPC and storage: 10 GBits / s
Dedicated iRODS storage server 190 To (750 To – phase 2 / 2018)

Operation
Processing nodes and storage capacity fully operationnal since April 2017
Current work: processing workflows developmment and evaluation of research results from 1st calculations

A2S: Specifications of the infrastructure

In

In/out

190 To
(750 To)

Phase 1
20 nodes
(16 Unistra – 4 CNRS)
1000x1000 km

Phase 2
80 nodes
5000 x 5000 km

A2S: Specifications of the infrastructure

workflows

Construction of the data model

Development of the workflow management system - FireWorks

FireWork: free and open-source code for defining, managing, and executing workflows
•  Complex workflows are defined using Python, stored in a MongoDB instance, and can be

monitored through a WEB GUI
•  The workflow execution are automated on the computing resources, including those that have a

queueing system
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Jain,	A.,	Ong,	S.	P.,	Chen,	W.,	Medasani,	B.,	Qu,	X.,	Kocher,	M.,	Brafman,	M.,	PetreRo,	G.,	Rignanese,	G.-M.,	Hau-er,	G.,	Gunter,	D.,	and	Persson,	K.	A.	(2015).	FireWorks:	a	
dynamic	workflow	system	designed	for	high-throughput	applica;ons.	Concurrency	Computat.:	Pract.	Exper.,	27:	5037–5059.	doi:	10.1002/cpe.3505	

Workflows monitoring through a WEB GUI

Workflows implementation: main objects of the FireWorks API
•  LaunchPad: allow interaction with launchPad → query MongoDB : jobs, states, rocket launch etc.

•  Workflow: list of Fireworks with dependencies

•  FireWork (FW)
 - List of FireTasks

 - List of attributes

•  parents: → define the dependencies between FWs

•  spec: → allow defining priority or category ... for the FW

 → Each Firetask in the FW can modify Spec.

 → it provides a way to embed data in the Firework

•  Firetask: sequential runs in a single FW

 - ScriptTask: run an external command/program

 - FileTransferTask: Helper task allowing file transfer (through ssh)

 - PyTask: run the Python functions passed as arguments

 - DIY : you can write your own Firetask …

•  FW Action

 Object returned by a Firetask. It allows controlling / modifying the workflow by using a computer
 programm (additions, defuse_children, detours …) and to act on specific data

Start: a unique entry point (e.g. python script)

l  1st step: for each thematic processing à Database query:
o  Where does the thematic processing apply? (e.g. footprints or tiles list)
o  What are the source types (e.g. S1, S2)
o  What is the period of interest (e.g. from / to dates)
o  Are there specifici criteria? (e.g. max_cloud_cover, geometric_quality_flag, etc)
o  What is the last imported image (e.g. date)
o  Are there already-scheduled-but-not-imported image
o  Who is the data provider (e.g. ESA Open Hub, GoogleCloud, PEPS …)
 → For each provider: image/tile list, start date, criteria …

l  2nd step: catalog queries:

o  Tile list
o  Start date
o  Criteria
 → List of products to download

l  3rd step: for each image / tile:

o  Sort list of product to download by ascending dates
o  Store images/tiles in DB (Already-scheduled-but-not-imported)
o  Build a data structure holding all information for the next tiles/images to download
o  Create the workflow in charge of the first image download embedding information to

dynamically create the workflow in charge of the next image download etc….

How a workflow is generated dynamically?

next_dls.append({"provider" : peps",
 "url": url,
 "log_file": None,
 "fname": fname,
 "output_dir": output_dir,
 "dl_dir": dl_dir,
 "priority": priority,
 "SAFE_format": SAFE_format,
 "prod_id": src['filename'][0:-5],
 "corrupted": corrupted,
 "max_cloud_cover": max_cloud_cover
 })

download_fw = Firework(PyTask(func='a2s_entry_point.dl_from_theia',
 args=[url, fname, output_dir]),
 name="download %s" % fname,
 spec={"_category": "seq_long", "_priority" : priority, "next_dls" : next_dls})

append_import_fw = Firework(a2s_tasks.AppendImportS2Task(dl_dir = dl_dir,
 SAFE_format = SAFE_format,
 priority = priority,
 corrupted = corrupted,
 max_cloud_cover = max_cloud_cover,
 is_ref = is_ref_image),
 name="append_S2_import_WF",
 parents=[download_fw],
 spec={"_category": "seq_short",
 "_priority" : priority,
 "next_dls" : next_dls})

dl_workflow_same_tile = Workflow([download_fw, append_import_fw], name="Download of %s" % fname)
launchpad = LaunchPad.auto_load()
launchpad.add_wf(dl_workflow_same_tile)

How a workflow is generated dynamically?

Example of a dynamic workflow

class AppendImportS2Task(FireTaskBase):

 _fw_name = 'AppendImportS2Task'
 required_params = ["dl_dir", "SAFE_format", "priority", "corrupted", "is_ref"]

 def run_task(self, fw_spec):
 (A2S_logger, __) = A2S_config.init_loggers()

 dl_dir = self["dl_dir"]
 SAFE_format = self["SAFE_format"]
 priority = self["priority"]
 corrupted = self['corrupted']
 max_cloud_cover = self['max_cloud_cover']
 is_ref = self['is_ref']

 next_dls_params = fw_spec["next_dls_params"]

 import_S2_wf = import_S2.get_wf(dl_dir, SAFE_format, priority, corrupted, max_cloud_cover, is_ref, next_dls_params)
 if import_S2_wf:
 A2S_logger.info("create & append S2 import workflow")
 return FWAction(additions=import_S2_wf)
 else:
 A2S_logger.fatal("import_S2.get_wf failed : no S2 import workflow created for SAFE archive %s" % dl_dir)

 return FWAction()

Example of a dynamic workflow

Example of a dynamic workflow

Example of a dynamic workflow

Example of a dynamic workflow

Workflow runs on A2S HPC: qadapters & FW categories
l  Interface with the A2S HPC queueing system: queue adapters
l  For Fireworks, a job is a job. Parallel, sequential, long, short, GPGPU = a job.

 → use of different categories of queue adapters.
 → a queue adapter only ask the launchpad for a certain category of FW

Example of a queue adapter:

Submission of a queue adapter:

 qlaunch -fm rapidfire -m 6 --sleep 60 --nlaunches "infinite"

_fw_name: CommonAdapter
_fw_q_type: SLURM
rocket_launch: mlaunch -w my_fworker.yaml -l my_launchpad.yaml 28 --nlaunches=infinite --sleep 20
Nodes: 1
Ntasks: 28
ntasks_per_node: 28
Walltime: '08:00:00'
queue: grant2
account: grant2ipgs
job_name: multiseq
logdir: /b/home/ipgs/dmichea/A2S/logs/fw_logs
pre_rocket: null
post_rocket: null
exclude: hpc-n[523-564,585-590]

Distributed scheduling by categories of FW
o  parallel: parallel / 28 cores (shm)
o  seq_long: sequential, long
o  seq_short: sequential, short

qlaunch -fm -w my_fworker_parallel.yaml -q my_qadapter_parallel.yaml rapidfire -m 5

qlaunch -fm -w my_fworker_seq_long.yaml -q my_qadapter_seq_long.yaml rapidfire -m 2

qlaunch -fm -w my_fworker_seq_short.yaml -q my_qadapter_seq_short.yaml rapidfire -m 3

→ The process dedicates nodes to the execution of a certain category of jobs
→ The computation needs per FW category can vary a lot in terms of workflow execution
→ There is a delay (sometimes > 1 day) between submission and start of a SLURM job

 à How to dynamically adapt ressources to the needs and avoid nodes starvation?
 à Solution: write a rocket scheduler

Workflow runs on A2S HPC: qadapters & FW categories

Categories of FW loads:
l  parallel: 28 cores / FW
l  seq_long: 1 core / FW
l  seq_short: 1 core / FW

ready fws load +
running fws load →
global_capacity_needed

 JOBID PARTITION NAME USER ST TIME NODES NODELIST
 3213012 grant2 rockets dmichea R 6:12:40 1 hpc-n531
 3213013 grant2 rockets dmichea R 6:12:40 1 hpc-n532
 3213014 grant2 rockets dmichea R 6:12:40 1 hpc-n533
 3213015 grant2 rockets dmichea R 6:12:40 1 hpc-n534
 3213016 grant2 rockets dmichea R 6:12:40 1 hpc-n535
 3213006 grant2 rockets dmichea R 6:20:09 1 hpc-n526
 3213007 grant2 rockets dmichea R 6:20:09 1 hpc-n527
 3213008 grant2 rockets dmichea R 6:20:09 1 hpc-n528
 3213009 grant2 rockets dmichea R 6:20:09 1 hpc-n529
 3213010 grant2 rockets dmichea R 6:20:09 1 hpc-n530

nb_running_jobs *
node_load_capacity
→ global_capacity

Workflow runs on A2S HPC: rocket scheduler

Infinite loop:
 get_slurm_queue_infos()
 get_fws_infos()
 while not fully_loaded:
 for each category:
 launch_rocket(category)
 recompute_load()
 if fully_loaded:
 break
 if master:
 if global_capacity < global_needs:

 submit_scheduler_instance()
 if no_more_fws_to_run:
 stop_all_jobs()
 return
 sleep(few seconds)

After the workflow creation, one
rocket_scheduler instance is submitted to the
queue:

sbat ch rocket_scheduler.slurm
→ execute rocket_scheduler.py

Workflow runs on A2S HPC: rocket scheduler

MPIC-OPT / Stumpf et al.

Thematic processing: progress of work

S1 Import

Script DL

Water-S1

S2 Import

CO-REGIS

ATTRIBUTES MPIC-OPT URBA-OPT

CHANGE-
DETECT

NSBAS-S1

Pre-operational

Integration 2018

Script DL, CO-REGIS, MPIC-OPT

ATTRIBUTES, URBA-OPT, Water-S1

NSBAS

MPIC-OPT: Current testing on several test areas
 e.g. landslide-prone Alps, Pyrénées

North Appenines

Glacier Bay

Collaboration with local evaluators:
Haiti: CNIG / CEOS RO
Alaska: USGS / Univ. Bri. Columbia
Colorado: USGS
Italy: CNR-IRPI, INGV
France: INSU – SNO OMIV, CEREMA
Taiwan: ENS

Slumgulliom

Example of results: MPIC-OPT

Landslide monitoring application

Surface displacement of Harmalière landslide

• 31 S2 images
• 1 L8 image
• 180 correlograms – 22 used for the analysis

Toe

Stumpf et al. (2017)

Example of results: MPIC-OPT

Tectonic application

Co-seismic slip / Kaikoura ETQ
Pre / Post event

• 4 x S2 (pre ; 5 x S2 – after)
• 40 correlograms

Stumpf et al. (2017)

Thematic processing: progress of work

S1 Import

Script DL

Water-S1

S2 Import

CO-REGIS

ATTRIBUTES MPIC-OPT URBA-OPT

CHANGE-
DETECT

NSBAS-S1

Pre-operational

Integration 2018

Puissant et al. (2017)

Script DL, CO-REGIS, MPIC-OPT

ATTRIBUTES, URBA-OPT, Water-S1

NSBAS

		
	
	
	
	
	

Vegeta-on:NDVI	

Soil:RI	

Brightness

S2 B08 : NIR

Current testing on Grand Est Region

20 S2 tiles

Thematic processing: progress of work

Puissant et al. (2017)

	
	
	
	
	
	

•  Software system
o Debugging and evaluation of current processing on the test areas
o  Integration of NSBAS-S1 processing (collab. ISTerre)
o  Implement simple systems for data dissemination

•  Infrastructure: 2nd phase integration (e.g. 80 nodes, 500 To data storage)

•  Research project
 ANR TIMES (start date: 1/12/2017): High-performance processing techniques
 for mapping and monitoring environmental changes from massive,
 heterogeneous and high frequency data time series

o  Topic: Big Data and Knowledge
o  Consortium: LIVE / EOST / LIPADE / MIPS / MONASH / ICUBE
o  Objectives: develop generic machine learning techniques to detect and quantify changes in

 heterogeneous time series

Conclusions - A2S short-term roadmap for 2018

Rapid	/	Instantaneous	changes	

Progressive	/	Cyclic	changes	

Financement
CNRS / LIVE

Financement
Unistra / CPER

